Modeling Clutter Perception using Parametric Proto-object Partitioning

نویسندگان

  • Chen-Ping Yu
  • Wen-Yu Hua
  • Dimitris Samaras
  • Gregory J. Zelinsky
چکیده

Visual clutter, the perception of an image as being crowded and disordered, affects aspects of our lives ranging from object detection to aesthetics, yet relatively little effort has been made to model this important and ubiquitous percept. Our approach models clutter as the number of proto-objects segmented from an image, with proto-objects defined as groupings of superpixels that are similar in intensity, color, and gradient orientation features. We introduce a novel parametric method of clustering superpixels by modeling mixture of Weibulls on Earth Mover’s Distance statistics, then taking the normalized number of proto-objects following partitioning as our estimate of clutter perception. We validated this model using a new 90-image dataset of real world scenes rank ordered by human raters for clutter, and showed that our method not only predicted clutter extremely well (Spearman’s ρ = 0.8038, p < 0.001), but also outperformed all existing clutter perception models and even a behavioral object segmentation ground truth. We conclude that the number of proto-objects in an image affects clutter perception more than the number of objects or features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling visual clutter perception using proto-object segmentation.

We introduce the proto-object model of visual clutter perception. This unsupervised model segments an image into superpixels, then merges neighboring superpixels that share a common color cluster to obtain proto-objects-defined here as spatially extended regions of coherent features. Clutter is estimated by simply counting the number of proto-objects. We tested this model using 90 images of rea...

متن کامل

Clutter perception is invariant to image size

Two experiments evaluated the effect of retinal image size on the proto-object model of visual clutter perception. Experiment 1 had 20 participants order 90 small images of random-category real-world scenes from least to most cluttered. Aggregating these individual rankings into a single median clutter ranking and comparing it to a previously reported clutter ranking of larger versions of the i...

متن کامل

Stochastic models for capturing image variability - IEEE Signal Processing Magazine

e review a recent result in modeling lower order (univariate and bivariate) probability densities of pixel values resulting from bandpass filtering of images. Assuming an object-based model for images, a parametric family of probabilities, called Bessel K forms, has been derived [1]. This parametric family matches well with the observed histograms for a large variety of images (video, range, in...

متن کامل

Fusion of Distributions for Radar Clutter Modeling

To recognize an object in an image, an algorithm must identify not only the object pixels, but also non-object clutter pixels. Non-object pixels can be assessed with a priori clutter models that account for the varying terrain and cultural objects. Radar clutter models have been well developed; however, these models typically incorporate a single distribution to capture background effects. In t...

متن کامل

تخمین وفقی مرز کلاتر در کلاتر‌های ویبول با استفاده از پیش آشکارساز UMPI

In radar detection, the existence of the clutter edge in the reference samples considerably degrades the performance of the detector. Hence, clutter edge estimation not only improves the CFAR detectors, but also can be used for partitioning the various areas of the clutter in the clutter map. In this paper, we propose an adaptive algorithm for detecting the clutter edge between two Weibull clut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013